3.2.73 \(\int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [A] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [A] (verified)
3.2.73.5 Fricas [A] (verification not implemented)
3.2.73.6 Sympy [F(-1)]
3.2.73.7 Maxima [B] (verification not implemented)
3.2.73.8 Giac [C] (verification not implemented)
3.2.73.9 Mupad [B] (verification not implemented)

3.2.73.1 Optimal result

Integrand size = 35, antiderivative size = 175 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

output
2/7*a*A*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+2/35*a*(6*A+7 
*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+8/105*a*(6*A+7*B) 
*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+16/105*a*(6*A+7*B)*s 
in(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
 
3.2.73.2 Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (27 A+14 B+9 (6 A+7 B) \cos (c+d x)+2 (6 A+7 B) \cos (2 (c+d x))+12 A \cos (3 (c+d x))+14 B \cos (3 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{105 d \cos ^{\frac {7}{2}}(c+d x)} \]

input
Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/ 
2),x]
 
output
(2*Sqrt[a*(1 + Cos[c + d*x])]*(27*A + 14*B + 9*(6*A + 7*B)*Cos[c + d*x] + 
2*(6*A + 7*B)*Cos[2*(c + d*x)] + 12*A*Cos[3*(c + d*x)] + 14*B*Cos[3*(c + d 
*x)])*Tan[(c + d*x)/2])/(105*d*Cos[c + d*x]^(7/2))
 
3.2.73.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3459, 3042, 3251, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4}{5} \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

input
Int[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]
 
output
(2*a*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + ( 
(6*A + 7*B)*((2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + 
 d*x]]) + (4*((2*a*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c 
+ d*x]]) + (4*a*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d 
*x]])))/5))/7
 

3.2.73.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.2.73.4 Maple [A] (verified)

Time = 7.38 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.62

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (48 A \left (\cos ^{3}\left (d x +c \right )\right )+56 B \left (\cos ^{3}\left (d x +c \right )\right )+24 A \left (\cos ^{2}\left (d x +c \right )\right )+28 B \left (\cos ^{2}\left (d x +c \right )\right )+18 A \cos \left (d x +c \right )+21 B \cos \left (d x +c \right )+15 A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{105 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}\) \(108\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (16 \left (\cos ^{3}\left (d x +c \right )\right )+8 \left (\cos ^{2}\left (d x +c \right )\right )+6 \cos \left (d x +c \right )+5\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{35 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}+\frac {2 B \sin \left (d x +c \right ) \left (8 \left (\cos ^{2}\left (d x +c \right )\right )+4 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{15 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(136\)

input
int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x,method=_RET 
URNVERBOSE)
 
output
2/105/d*sin(d*x+c)*(48*A*cos(d*x+c)^3+56*B*cos(d*x+c)^3+24*A*cos(d*x+c)^2+ 
28*B*cos(d*x+c)^2+18*A*cos(d*x+c)+21*B*cos(d*x+c)+15*A)*(a*(1+cos(d*x+c))) 
^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(7/2)
 
3.2.73.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (8 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right ) + 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="fricas")
 
output
2/105*(8*(6*A + 7*B)*cos(d*x + c)^3 + 4*(6*A + 7*B)*cos(d*x + c)^2 + 3*(6* 
A + 7*B)*cos(d*x + c) + 15*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))* 
sin(d*x + c)/(d*cos(d*x + c)^5 + d*cos(d*x + c)^4)
 
3.2.73.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(9/2),x)
 
output
Timed out
 
3.2.73.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 522 vs. \(2 (151) = 302\).

Time = 0.35 (sec) , antiderivative size = 522, normalized size of antiderivative = 2.98 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (\frac {7 \, B {\left (\frac {15 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {25 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {17 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {7 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} + \frac {3 \, A {\left (\frac {35 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {70 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {84 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {58 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {9 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{4}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {4 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {6 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {4 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {\sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + 1\right )}}\right )}}{105 \, d} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="maxima")
 
output
2/105*(7*B*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2 
)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x 
 + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + 
 c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(co 
s(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3 
*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1) 
^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)) + 3*A*(35*sqrt(2)*sqrt(a)*s 
in(d*x + c)/(cos(d*x + c) + 1) - 70*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d* 
x + c) + 1)^3 + 84*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5 
8*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 9*sqrt(2)*sqrt(a)* 
sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 
+ 1)^4/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d* 
x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*sin(d*x 
+ c)^4/(cos(d*x + c) + 1)^4 + 4*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + sin( 
d*x + c)^8/(cos(d*x + c) + 1)^8 + 1)))/d
 
3.2.73.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 237.66 (sec) , antiderivative size = 136951, normalized size of antiderivative = 782.58 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="giac")
 
output
-134217728/105*sqrt(2)*sqrt(-tan(1/4*d*x + c)^4*tan(1/2*c)^8 + 14*tan(1/4* 
d*x + c)^4*tan(1/2*c)^6 - 24*tan(1/4*d*x + c)^3*tan(1/2*c)^7 + 6*tan(1/4*d 
*x + c)^2*tan(1/2*c)^8 + 56*tan(1/4*d*x + c)^3*tan(1/2*c)^5 - 84*tan(1/4*d 
*x + c)^2*tan(1/2*c)^6 + 24*tan(1/4*d*x + c)*tan(1/2*c)^7 - tan(1/2*c)^8 - 
 14*tan(1/4*d*x + c)^4*tan(1/2*c)^2 + 56*tan(1/4*d*x + c)^3*tan(1/2*c)^3 - 
 56*tan(1/4*d*x + c)*tan(1/2*c)^5 + 14*tan(1/2*c)^6 + tan(1/4*d*x + c)^4 - 
 24*tan(1/4*d*x + c)^3*tan(1/2*c) + 84*tan(1/4*d*x + c)^2*tan(1/2*c)^2 - 5 
6*tan(1/4*d*x + c)*tan(1/2*c)^3 - 6*tan(1/4*d*x + c)^2 + 24*tan(1/4*d*x + 
c)*tan(1/2*c) - 14*tan(1/2*c)^2 + 1)*(((((((((((((((12*I*A*e^(1071/2*I*c) 
+ 14*I*B*e^(1071/2*I*c) + 4944*I*A*e^(1069/2*I*c) + 5768*I*B*e^(1069/2*I*c 
) + 1015992*I*A*e^(1067/2*I*c) + 1185324*I*B*e^(1067/2*I*c) + 138852240*I* 
A*e^(1065/2*I*c) + 161994280*I*B*e^(1065/2*I*c) + 14197641540*I*A*e^(1063/ 
2*I*c) + 16563915130*I*B*e^(1063/2*I*c) + 1158527549664*I*A*e^(1061/2*I*c) 
 + 1351615474608*I*B*e^(1061/2*I*c) + 78586785452286*I*A*e^(1059/2*I*c) + 
91684583027667*I*B*e^(1059/2*I*c) + 4558033556260200*I*A*e^(1057/2*I*c) + 
5317705815636900*I*B*e^(1057/2*I*c) + 230750448790649688*I*A*e^(1055/2*I*c 
) + 269208856922424636*I*B*e^(1055/2*I*c) + 10358131257430815000*I*A*e^(10 
53/2*I*c) + 12084486467002617465*I*B*e^(1053/2*I*c) + 41743268973037417024 
2*I*A*e^(1051/2*I*c) + 487004804685436517529*I*B*e^(1051/2*I*c) + 15255267 
392486063535840*I*A*e^(1049/2*I*c) + 17797811957900404495170*I*B*e^(104...
 
3.2.73.9 Mupad [B] (verification not implemented)

Time = 6.44 (sec) , antiderivative size = 479, normalized size of antiderivative = 2.74 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (\frac {\left (96\,A+112\,B\right )\,1{}\mathrm {i}}{105\,d}-\frac {B\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}+\frac {B\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}-\frac {{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\left (96\,A+112\,B\right )\,1{}\mathrm {i}}{105\,d}+\frac {{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\left (336\,A+392\,B\right )\,1{}\mathrm {i}}{105\,d}-\frac {{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\left (336\,A+392\,B\right )\,1{}\mathrm {i}}{105\,d}\right )}{\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}} \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(9/2),x 
)
 
output
((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(((96*A + 1 
12*B)*1i)/(105*d) - (B*exp(c*3i + d*x*3i)*8i)/(3*d) + (B*exp(c*4i + d*x*4i 
)*8i)/(3*d) - (exp(c*7i + d*x*7i)*(96*A + 112*B)*1i)/(105*d) + (exp(c*2i + 
 d*x*2i)*(336*A + 392*B)*1i)/(105*d) - (exp(c*5i + d*x*5i)*(336*A + 392*B) 
*1i)/(105*d)))/((exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + ex 
p(c*1i + d*x*1i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 3 
*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) 
+ 3*exp(c*3i + d*x*3i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/ 
2) + 3*exp(c*4i + d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^ 
(1/2) + 3*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/ 
2)^(1/2) + exp(c*6i + d*x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i) 
/2)^(1/2) + exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i 
)/2)^(1/2))